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Discrete orthogonal function expansions are obtained for non-uniformly spaced data by 
combined use of mapping functions and the fast Fourier transform. The result yields alias-free 
differentiation and integration operators. The method is applicable to periodic, zero, or zero 
derivative boundary conditions (or combinations thereof). Truncation is required to avoid 
aliasing and/or singularity but the truncation error is explicit, quantitatively expressible, and 
generally small. This approach is demonstrated in an infinite physical domain with 
application to linear convection and diffusion. The resulting errors are orders of magnitude 
smaller than those generated by standard finite-difference methods. Difficulties arising from 
image fields are an important phenomena. The method of differentiation, as well as the 
boundary conditions, imply (artificial) image fields. A vortex-pairing problem is presented 
which shows that image flows can totally alter the solution. The new scheme avoids this 
undesirable effect by keeping image flows infmitely far away. scl 1984 Academic Press, Inc. 

1. INTRODUCTION 

The present work is motivated by the need for accurate numerical differentiation 
and integration schemes for mixed initial-boundary value problems in which the 
boundary conditions are imposed far from the region of physical interest. 

Discrete orthogonal function expansions provide maximum accuracy for a given 
number of grid points. Unfortunately there are only a few orthogonal function 
expansions for which fast algorithms are available. 

Gottlieb and Orszag [I] discuss the presently known techniques. Discrete Fourier 
and Chebychev expansions are the only commonly used orthogonal expansions for 
large problems; however, Leonard and Wray [2] recently found a particular set of 
Jacobi polynomials which is advantageous for the radial mode expansion of a cylin- 
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drical coordinate problem. Also the Legendre polynomials are used for spherical 
coordinates such as in spectral weather calculations. 

The most common spectral method is the discrete Fourier expansion due to Cooley 
and Tukey [3]. Their algorithm, the FFT (Fast Fourier Transform), reduces the 
number of operations from order N2 to order N log N. The original Cooley-Tukey 
algorithm is limited to uniformly spaced data. Winograd (41 developed an FFT 
which allows even more efficient expansion of certain sizes of data sets. 

Application of the FFT requires uniformly spaced data in a finite domain and 
implies that the data are periodic. For data which vary smoothly and for which 
periodicity is justified, the coefficients of the resulting expansion decay rapidly. In 
this case a very smooth interpolation of the given data is obtained from the Fourier 
expansion by choosing the set of wavenumbers with minimum maximum magnitude. 
This smooth, continuous analytical representation of the data may be differentiated or 
integrated’ with great accuracy. 

If periodicity is not justified, or there are sudden jumps in the data, the Fourier 
expansion coefficients do not decay rapidly (if at all). In this case, the interpolation is 
not smooth and some other representation may be more appropriate. When the 
problem is due to invalid use of periodic boundary conditions, one may, in some 
cases, overcome the difficulty by analytic continuation. The easiest such cases are 
zero or zero derivative boundary conditions which may be made periodic in a larger 
domain by analytic continuation of a sine or cosine series. The coefficients of the 
resulting analytically continued periodic representation can be computed by .an FIT 
with two or four times as many points as the physical region contains. 

The use of the discrete Fourier expansion may be extended further by using 
polynomials to remove the non-periodic character of the data: the remaining portion 
of data is then expanded in the usual fashion. 

Often in physical problems most of the variation in the quantity of interest occurs 
primarily in one or two local regions. For this class of problems direct use of the 
discrete Fourier transform is inappropriate as most of the points are effectively 
wasted. Mapping functions may be useful in such cases. The present work shows that 
there are particular mappings which, when combined with the FFT, provide a 
powerful method of differentiating or integrating discrete data in infinite domains. 
The development of the method and a few applications of physical interest are given 
in the remainder of this paper. 

2. STANDARD FOURIER METHODS 

The discrete Fourier transform is defined for any number of grid points; however, 
efficient algorithms usually limit the number of points to particular integers. In the 
most popular routines (due to Cooley and Tukey), this number is often a power of 
two; the Winograd [4] method allows the number of points to be the product of any 

’ There is a difficulty with an even number of data points which is addressed in the next section.. 
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set of “mutually prime” numbers (no element of which needs to be prime). Silverman 
[5] demonstrates the reduction in speed of the Winograd algorithm over the Cooley- 
Tukey method. Since the Winograd method has not yet seen extensive application, 
only even numbers of data points are considered. For an odd number of data points 
the approach to differentiating and mapping are even simpler and directly follow the 
methodology below. 

For a function defined on a set of uniformly spaced grid points, say, x, = (n - 1)/N 
(n = 1,2,3,..., N), the discrete Fourier transform can be defined by 

fk = $, j-(x,) e-ik2xxm. 

In Cooley-Tukey algorithms N= 2” (m = 1,2, 3,...). There are an infinite number of 
possible choices for the wavenumbers k used in Eq. (1). As long as one is only 
interested in representing the function on the grid points, the choice among 
permissible sets is irrelevant. However, using the fast Fourier transform (FFT) as a 
means of obtaining derivatives or integrals implies considering Eq. (1) as an inter- 
polation, and it is important to choose the wavenumbers which give the smoothest 
interpolation possible. For an even number of grid points, there are two equally good 
choices: 

k-T, -++ l,...,$ 1 

or 

k=-;+ 1, - ; + 2,..., ;. 

Either choice means that the wavenumber ( k I= N/2 is represented only by a single 
waveform; all other wavenumbers have two waveforms corresponding to &k. As a 
result, the information about the highest wavenumber component is incomplete; in 
fact, neither its phase nor its amplitude is known. Consequently, it cannot be differen- 
tiated or integrated. Most workers set the amplitude of the (k I= N/2 waveform to 
zero. (This problem does not occur with odd point transforms.) Using the first 
wavenumber set above, the derivative is 

(2) 

where 

k’=k, Ikl #N/2 
k’=O, lkl=N/2. 
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Note that in this standard application of the discrete Fourier method, the kth 
transform coefficient for the derivative depends only on the kth transform coefficient 
of the function itself. That is, in the standard Fourier method there is no coupling of 
modes under differentiation or integration. This is not true of the Chebychev 
polynomials, for which the physical data are non-uniformly spaced. In the next 
section a general analysis of mapping function shows that non-uniform mappings 
always result in modal coupling under differentiation, and, consequently, under 
integration 

3. FOURIERTRANSFORMS ON NON-UNIFORM GRIDS 

Mappings are commonly used to modify the geometry such that the function is 
smoother in the transformed coordinate system. One can then space the mesh points 
uniformly in the new coordinate system. Although mappings complicate the equations 
to be solved, numerical methods are both more easily applied and more accurate in 
the transformed coordinate system. These advantages almost always outweigh the 
disadvantages, and coordinate transformations are a standard part of numerical 
methods today. Indeed, the development of better mapping methods is a major field 
of research. 

For reasons of simplicity, attention is restricted to one-dimensional problems. Eet z 
be the physical coordinate; and let the computational coordinate [ be introduced 
through a mapping 

z = h(i). (31 

The derivatives in the two coordinate systems are related via the chain rule: 

(4j 

In the transformed coordinate system, the function can be defined in terms of its 
values on a uniformly spaced grid cj =j A[ and can be represented as a discrete 
Fourier transform: 

j-(,&j = f ‘?I fk&k2Q. 
k-?/2 

The Fourier representation (5) can be used to compute the derivative df/d[ that 
appears in Eq. (4). One can then multiply by the mapping metric l/h’ to compute 
df/dz as did Grosch and Orszag [6] with algebraic mappings and Chebychev 
expansions. The difficulties with this approach are that, in general, the result contains 
considerable aliasing or truncation error, and the resulting operator cannot be 
inverted if the number of points used is even. A more careful examination of these 
difficulties proves useful. 
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Note that I/h’(c), the metric which appears in Eq. (4), can itself be represented as 
a discrete Fourier series similar to the one in Eq. (5). In general, N terms are needed 
and, when this series is multiplied by the one representing dfld[, the result contains 
2N - 1 wavenumbers, -N,..., N - 2. Truncating the result to N terms produces the 
large truncation error alluded to above. Performing the multiplication in physical 
space would produce equally damaging aliasing errors. 

These errors are greatly reduced by restricting the allowed mapping functions to 
those which contain only a few Fourier modes with small wavenumbers. Thus, 
suppose 

1 In 
h’(r) = ,=z, ~keik2T1v 

N 
m+--. 

2 

When this is substituted into Eq. (4), the result contains N + 2m - 1 wavenumbers. 
By making m small and truncating the modes whose wavenumbers are less than 
-N/2 + 1 or greater than N/2 - 1, a small but acceptable truncation error results 
provided the Fourier coefficients off decay sufficiently rapidly. The multiplication of 
l/h’ and df/dl; must be carried out in Fourier space with df/d[ given by Eq. (2). If 
the product is taken in configuration space, the result will be aliased and the *N/2 
mode will be populated making the inverse of the differentiation operator singular 
because k’ = 0 for k = *N/2. Defining the derivative via the truncated transform- 
space product allows construction of an integral operator which is the exact inverse 
of the differentiation operator in the sense that the derivative of the integral off is 
e,yactlqj f provided f is defined exactly by no more than (N - 1) Fourier modes. These 
operators are alias-free in the sense that the operator itself introduces no aliasing. 

We shall illustrate these ideas with two mappings suitable for free shear layer 
problems in fluid mechanics which are best treated in infinite domains. For plane jet 
or wake flows, the region of interest is infinite in the gradient direction, the boundary 
values are identical at fco, and clustering of the grid points near the origin is 
desirable. The cotangent provides a suitable mapping function for this case, i.e., 

z = h(C) = -b cotan( o<c< 1, -co<z<co. 

This gives the metric 

1 - 
(ei2s3 + e -iZn[) 

I 2 * 

(7) 

(8) 

Recalling Eq. (6), we see that m = 1 and the Fourier coefficients of the metric are 

iI = d-1 = 1 Al -- 
4rcb ’ a,==. (9) 
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This achieves both grid clustering near the origin and a minimum truncation error 
since m = 1. An estimate of the error in the derivative off(z) is 

which will be small if fN,,-, is small. The mapping above is applied to a vorte:r.- 
pairing problem (discussed in a later section). 

Another problem of interest is the time-developing free shear layer. The major 
difference between this case and the previous one is that the boundary conditions are 
no-stress rather than periodic. A variation of the mapping (7) that is suitable for this 
case is 

z = h ([) = -b cotan(2&J, o<C-<+, -cQ<z<cQ. (11; 

As indicated, the domain 0 < [< 4 is the image of the physical region 
-co < z < co under this mapping. However, the boundary conditions are such that 
the problem is not periodic in this domain. We can construct a periodic problem. 
however. by letting < range from zero to unity in the computation and deflrning the 
solution for 4 < < < 1 by reflection about [ = $, This means that in z-space two 
Riemann sheets are considered, one physical, one fictitious. This method is equivalent 
to using a Fourier sine or cosine expansion in place of an exponential Fourier 
transform and twice the work is required (other special methods do not require this 
extra work). The choice of sine or cosine transform depends on the nature of the 
function being expanded. The metric resulting from this mapping is 

1 (eiZ(‘n3’ + e-iZ(?7r5)j 

F- 2nb 
-isin”(27c[)=& 

2 

and its Fourier coefficients are 

An estimate for the maximum error in the derivative offin this case is 

and is small ifj%,;, - 1 andfN,, - 2 are small. 

4. SOLUTION OF DIFFERENTIAL EQUATIONS 

(12) 

(14) 

When solving differential equations numerically it is important (and often 
essential) that the integral and differential operators be exact inverses of each other. 
Such consistent operators may be defined by using the results of the previous section. 
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For the sake of definiteness, let us consider mapping (7). The method of the 
preceding section gives 

where the prime on the summation indicates that any term with an index of 
magnitude greater than (N/2 - 1) is zero. Similarly, the second derivative is 

S’f 1 N/2-1 

--T =- 
6Z zj Nb ,=-;,:,I 

ik& - i(k;l)Tk-l- i(k;l)fk+l] 

-i(k - 1) 

26 
i(k - l).&- 1 - 

I 
-i(k + 1) 

2b W+ l).fi+l 
_ Gfk _ i(k l 2, fk+*] 1 eik2zCj. 

Similar application to the no-stress mapping (11) gives 

ikfk - @;Vfkd2 _ i(k: 2)1~+~] eiZnkgi 

and 

ef- 1 

6z2 Z. 
N!$: 15 ikjk _ i(k; 2) p _ _ i(k + 2) 

,=zbhr&++, (2b [ 
k 2 2 .fk+2] 

i(k + 2) - 
4b 

[ i(k - 2)fk-, - i(k;4)Sx”_gk] 

i(k + 2) - 4b i(k + 2).6k+ i(k 4, _ 
2 

ffk : fki4] _ 1 ei2xklje 

(16) 

(17) 

(18) 

To illustrate this method, consider the solution of a typical elliptic problem, that of 
solving the Poisson equation 

V2P = Q. (19) 

This equation may be solved by use of the three-dimensional Fourier transform. The 
solution is very easily and accurately obtained for the periodic case on a finite 
domain with a uniform grid in all three directions. The Fourier coefficients of P are 
obtained by dividing Q(k) by the negative of the square of the magnitude of the 
wavenumber vector / kl. P is then found by the discrete Fourier inversion. This 
process can be expressed in terms of the linear algebraic system for the Fourier coef- 
ficients as 

A [rj] = [Q]. (20) 
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In the above case, A is a diagonal matrix. It is also singular with a one-parameter 
family of solutions to the homogeneous equation due to the k, = k, = k = 0 mode 
(p(O)) which is an undetermined constant. Thus P = P, i- c where c is an undeter- 
mined constant and Pp is a particular solution. This constant is a solution to the 
homogeneous equation which satisfies the periodic boundary conditions. In most 
physical problems only the derivative of the solution is important and this constant 
may be set to zero without loss of information. 

The situation with a non-uniform grid in one of the three coordinate directions is 
only slightly more involved. Let x1 and x2 be uniform grid directions with 
corresponding wavespace components k, and k,. A three-dimensional wavespace is 
now defined by the third orthogonal component k, from the transformed uniformly 
mapped coordinate [. The non-zero matrix coefficients for mapping (7) are 

ak.k-2 = - 
(k- l)(k-2) 

4b2 

a k,k-I = 

k(k - 1) + (k - 1)’ 

2b2 2b2 

a k,k=-ki-k:-~-k(k4~21)-k(~~1) 

a 
k(k + 1) + (k + 1)’ 

k,k+l = z/,2 2b’ 

a 
(k + l)(k + 2) 

k,k+2 = - 4b’ * 

Mapping (11) gives 

a 
(k - 2)(k - 4) 

k.k-4 = - 16b2 

ak k-2 = W- 2) + (k - 212 
8b2 8b2 

k2 
a,,,=-k:-k$--- 

k(k - 2) k(k + 2) 

4b2 16b’ - 16b’ 

a 
k(k + 2) + (k + 2)’ 

k,kt2= @2 8b2 

a (k + 2)(k + 4) 
k.k+l = 

- 16b’ . 

(21‘5 

In expressions (21) and (22) any parenthetic factor of magnitude greater than 
(N/2 - I) is set to zero. The first matrix element subscript runs vertically and 
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corresponds to row k and mode k; the second subscript corresponds to the column 
position. The resulting matrix systems are non-singular’ and are readily solved by 
standard techniques. Obviously if a function is integrated in this way and then 
differentiated the original function is recovered. 

Thus finding the full set of P requires the solution of [(N, - l)(N, - I)] systems of 
(N - 1) X (N - 1) pentadiagonal matrix equations. For real data, only half as many 
systems need to be solved as P - (k) = p*(k) w h ere the asterisk denotes the complex 
conjugate. The matrix for k, = k, = 0 is singular (rank N- 2) and only the equations 
for k = 1, 2, 3 ,..., N/2 - 1 are solved using P(k = 0) = 0 and P(-k) = j*(k). 

The basis for discrete orthogonal function expansions for derivative and integral 
operators is now defined through use of the fast Fourier expansion and a restricted 
set of mapping functions. The formulation is conveniently expressed in terms of linear 
algebraic equations for the Fourier coefficients. The non-uniform grid is shown to 
result in a coupling of the transform coefficients. This coupling results in a centered 
tridiagonal matrix operator for the Fourier coefficients of the first derivative, and a 
pentadiagonal one for the second. The infinite domain may be used in more than one 
direction but the subsequent solution of the Poisson equation would require inversion 
of a very large matrix or use of an ADI- or SOR-type approach. 

5. APPLICATION TO TEST PROBLEMS 

In this section, three problems are solved using the method defined above. 
Comparison with analytical and finite-difference solutions are appropriate for the first 
two problems. The third problem demonstrates one of the major reasons for 
development of this method. 

A. Convection 

Mapping (11) is evaluated here but the results apply to both mappings. The one- 
dimensional convection equation is 

a24 au 
~+c~=o (23) 

and has the exact solution 

u(z, t) =f(z - ct) (24) 

which says that any initial waveform propagates toward increasing z with uniform 
speed c. A Gaussian initial condition is used, for which the exact solution to Eq. (23) 
is 

u(z, t) = exp{- [1.6651(2 - ct)/SI,J2}. 

’ Recall that the values of k are k = -N/2 + 1, -N/2 + 2,..., N/2 - 1. 
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In the problem solved, S,,, = 4 and c = -1; 81,,2 is the width of the waveform at half 
its peak value. 

Using mapping (1 1), which is appropriate for functions which vanish or whose 
derivatives vanish at finfinity, we fixed the grid by using b = 32/z and 33 physical 
points. Although one can use the complex exponential transform in this problem, a 
combination of sine and cosine transforms were used. 

Another way of looking at this is to use the Riemann sheet perspective. A cosine 
expansion implies a function imaged symmetrically about infinity onto a second 
Riemann sheet. Similarly, a sine expansion implies an antisymmetric reflection onto 
the second Riemann sheet. The physical and image solutions will propagate toward 
one another and meet at infinity at infinite time. The combination 

produces no image on adjacent Riemann sheets, and periodicity is obtained over two 
Riemann sheets. AI1 solutions are identical and propagate with equal speed in the 
same direction. 

The time integration is accomplished by the well-known fourth-order Runge-Kufta 
scheme with Courant number dt Ic~/~z,,,~, = 0.01. The time step was chosen small so 
that the error is dominated by that of the spatial-differencing scheme. 

We also solved this problem using two common finite-difference schemes on the 
same non-uniform grid. The first is 

where 

chl 
- =CLUj-l+BUj+YUj+[ 

62 ;, 
(25) 

1 1 

a = - (AT- JAj) + Aj- 1 ’ )‘=A,+ (A,;p& 

p=-a-y 

Aj = zj+ 1 - z,~ 

and the second is 

6I.l 
z zj=auj_l + Wj+1 

1 
a=--y=- 

‘jtl -5-1 

The scheme given by Eq. (25) is second order in physical space and slightly more 
accurate than Eq. (26), which is second order in computational space but first order 
in physical space. 
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Figure 1 shows the exact solution and the computed solutions at T= et/d,,? = 2.0 
obtained using Eq. (25) and the new Fourier scheme. The maximum error in the 
solution is 0.34 using Eq. (25), 0.40 using Eq. (26), and 0.0032 for the new Fourier 
scheme. Thus the new Fourier method is superior to finite-difference calculation for 
this problem. 

B. Diffusion 

Now consider a diffusion problem. 

au a*u 
z=vaZ’ (27) 

is solved using the same grid as for the convection problem. 
The fourth-order Runge-Kutta scheme was used for the time advance with a 

dimensionless time step 

vAt 
___ = 0.05625. 
Azkn 

Two finite-difference schemes for the second partial derivative were used. The first 
scheme is two consecutive applications of (25); the second finite-difference scheme is 
given by 

r 

d2U 
7 
6z- i. 

= ffUj_ I+ /3Uj + Y”j+ 1 

J 

I I I 

0 INITIAL GRID (ANALYTICAL SOLUTION) 

: ;,“; T.+ 
I 

F.D.-FINITE DIFFERENC 

‘12 

N.F.-NEW SPECTRAL 
METHOD 

(28) 

FIG. 1. Comparison of finite-difference, new Fourier, and analytical solutions to the first-order 
convection equation. 
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where 

a = 2/[4,(4 +Aj-J 

,8 = -2/AjAj-l 

Y=2/[Aj(Aj+Aj-I)]. 

Representation (28) is a three-point scheme and is first-order accurate; it becomes 
second order as Aj- L -+ Aj. 

The initial condition used was an error function , giving the self-similar analytical 
solution: 

u(z, t) = erf[z/fi]. 

The computations were begun at t, = 25 and the computation was advanced until 
tf= 16t,; P was 0.06. 

Figure 2 shows the time history of the maximum normalized error defined by 

as a function of dimensionless time, where U, = U(X, t = 0). u, is the analytical 
solution, and U, is the computed solution. The new Fourier scheme has errors six 

Em 

I o3 0 ;(;I A.1 
FINITE 

P2 ) ““““‘YCE 

A NEW FOURIER 

IL 

IO” - A A 

A 

12 - 

A 
A 

lb, 
, I 

4 

FIG. 2. Comparison of the maximum dimensionless errors of finite-difference and new Fcurier 
solutions to the heat or diffusion equation. 
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orders of magnitude smaller than the finite-difference method at early times and three 
orders of magnitude smaller at later times. Thus the new Fourier method is also far 
superior to the finite-difference method for this problem. 

C. Vortex Interactions 

Boundary conditions meant to be applied at infinity are often applied at a finite 
location. When this is done, the boundary conditions imply unphysical image 
solutions which can cause errors. In severe cases, interaction of the image solutions 
and the physical one may render the computed solution meaningless. The new 
Fourier method puts the image flows infinitely far away, thus eliminating this 
difficulty. Couet and Leonard [7] used analytical extension of the boundary 
conditions at infinity to some finite location as an alternative solution to this 
problem. 

Suppose one wishes to compute the flow due to two vortices of the same sign. One 
method to apply a no-stress boundary condition at a finite distance from the vortices 
is to use discrete sine and cosine transforms. This implies an infinite array of pairs of 
image vortices with alternating signs of vorticity. In order to assess how much the 
image flows affect the computed solution, the following numerical experiment is 
performed. First two pairs of vortices of opposite sign are placed a distance 42 
above and below the x axis, respectively, as shown in Fig. 3. The vortices have ellip- 
tical Gaussian distributions of vorticity with eccentricity t and separation distance c. 
If d % c, the upper vortices rotate about one another in a clockwise manner, while the 
lower pair rotate counterclockwise. Furthermore, if the pairs are far enough apart not 
to affect one another, a horizontal shift in the location of the lower pair of vortices by 
a distance c/2 should give identical results. In this calculation, the mapping given 
Eq. (7) was used. The standard Fourier method for differentiating in the x-direction 
and the second-order Adams-Bashforth scheme was employed for the time advance. 

$=3,4; +=3,2 

FIG. 3. Schematic view of vortex pairing, image flow study. 
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The grid had 15 points in the x-direction and 128 in the z-direction. The vortex pairs 
were centered at grid points 59 and 71 in z and grid points 5 and I1 in x. The coef- 
ficient b, of the mapping function, was b = 192~ (this gives dz = I.5 near the origin); 
the dimensionless time step was selected so that (u,,Jdx + M’may/dZmi”) Ai = 0.3. 
This problem was solved using the vorticity equation 

and the vector potential equation 

c’ly = -(-jj. (30) 

Since the vorticity equation is non-linear the calculation was done pseudospectrally 
for efficiency but all aliasing is due to this real space non-linear product, not the 
mapping for differentiation. The velocity components are obtained from 

Integrating until dimensionless time T= uma,t/c = 1.0, at which point we 
compared the %rbulent” kinetic energy (turbulence is defined as the loca6 deviation 
from the x-direction) average with the initial “turbulent” energy. For the case shown 
in Fig. 3, the turbulent kinetic energy was the same at T = 1 and T= 0. However, 
when the lower pair of vortices was shifted by c/2, the turbulent kinetic energy at 
T = 1 was double the turbulent energy at T = 0. 

One thus concludes that a computation with d/c = I.5 suffers tremendously from 
the influence of image flows. The same calculation performed with d/c = 4 shows no 
significant image flow influence. 

CONCLUSION 

A technique for applying discrete Fourier series to infinite domains has been 
presented. It makes use of mappings designed to minimize truncation error and can 
be applied to the solution of mixed initial boundary value problems among others. 
The method is alias-free, and yields consistent differentiation and integration 
operators. The mapping-induced truncation error is explicitly expressible and small in 
nearly all cases of interest. 

The differentiation operators resulting from this method are equivalent to 
tridiagonal matrices in Fourier space. Solution of a second-order equation requires 
inversion at a pentadiagonal system of equations for the Fourier coefficients. In 
applications of the approach to linear convection and diffusion equations the errors 
are orders of magnitude smaller than those generated by finite-difference techniques 
with equal numbers of points. 

581 56.‘?-8 
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Image flow effects are demonstrated in a vortex-pairing problem. The results show 
the possibility of large distortions due to image flows. The present method removes 
the difficulty by moving image flows infinitely far away. 
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